NP-hardness of linear multiplicative programming and related problems
نویسنده
چکیده
The linear multiplicative programming problem minimizes a product of two (positive) variables subject to linear inequality constraints. In this paper, we show NP-hardness of linear multiplicative programming problems and related problems.
منابع مشابه
RESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملPrimal and dual multi-objective linear programming algorithms for linear multiplicative programmes
Multiplicative programming problems (MPPs) are global optimisation problems known to be NP-hard. In this paper, we employ algorithms developed to compute the entire set of nondominated points of multi-objective linear programming (MOLP) problems to solve linear MPPs. First, we improve our own objective space cut and bound algorithm for convex MPPs in the special case of linear MPPs by only solv...
متن کاملComparing Two-Echelon and Single-Echelon Multi-Objective Capacitated Vehicle Routing Problems
This paper aims to compare a two-echelon and a single-echelon distribution system. A mathematical model for the Single-Echelon Capacitated Vehicle Routing Problem (SE-CVRP) is proposed. This SE-CVRP is the counterpart of Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) introduced in the authors’ previous work. The proposed mathematical model is Mixed-Integer Non-Linear Programming (MIN...
متن کاملPresentation and Solving Non-Linear Quad-Level Programming Problem Utilizing a Heuristic Approach Based on Taylor Theorem
The multi-level programming problems are attractive for many researchers because of their application in several areas such as economic, traffic, finance, management, transportation, information technology, engineering and so on. It has been proven that even the general bi-level programming problem is an NP-hard problem, so the multi-level problems are practical and complicated problems therefo...
متن کاملStochastic Minimum Spanning Trees and Related Problems
We investigate the computational complexity of minimum spanning trees and maximum flows in a simple model of stochastic networks, where each node or edge of an undirected master graph can fail with an independent and arbitrary probability. We show that computing the expected length of the MST or the value of the max-flow is #P -Hard, but that for the MST it can be approximated within O(log n) f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 9 شماره
صفحات -
تاریخ انتشار 1996